Yli 20 vuoden kokemus OEM- ja ODM-palveluista.

Taottu teräs, korkean lämpötilan, korkean paineen ja matalan vääntömomentin omaava palloventtiili, Kiinan tehdas

Lyhyt kuvaus:

Taottu teräspalloventtiiliNPS: 2″–56″

Warren Valve tarjoaa 2”–48” taotusta teräksestä valmistettuja taakse kiinnitettyjä palloventtiilejä, jotka täyttävät alan tiukimmatkin vaatimukset.
Tuotteisiimme kuuluvat ANSI-luokat 150–2500 hiiliteräksestä valmistetut rungot, joissa on kemiallinen nikkelipinnoitus tai ruostumattomasta teräksestä valmistetut yksityiskohdat, sekä kokonaan ruostumattomasta teräksestä valmistetut rungot ja yksityiskohdat.

API 6D, API 607 ​​Firesafe, NACE MR0175, ATEX-sertifioitu.

Paineluokitus: Luokka 150–2500 paunaa

Manuaalinen käyttö, pneumaattinen käyttö ja sähköinen käyttö.

Runko: valuterästä, taottua terästä

Istuin: DEVLON/NYLON/PTFE/PPT/PEEK jne.

NORTECHis yksi johtavista Kiinan taotusta teräksestä valmistetuista palloventtiileistä Valmistaja ja toimittaja.

 


Tuotetiedot

Tuotetunnisteet

Mikä on taottu teräspalloventtiili?

A Taottu teräspalloventtiilitarkoittaa, että laakerit rajoittavat palloa ja se saa vain pyöriä, mutta järjestelmän rajoitukset kannattavat suurimman osan hydraulisesta kuormasta, mikä johtaa alhaiseen laakeripaineeseen eikä akseli väsy.

Putkiston paine painaa ylävirran puoleista tiivistettä paikallaan olevaa palloa vasten, jolloin linjapaine pakottaa ylävirran puoleisen tiivisteen palloa vasten ja saa sen tiivistymään. Pallon mekaaninen ankkurointi vaimentaa linjapaineen työntövoiman estäen liiallisen kitkan pallon ja tiivisteiden välillä, joten käyttömomentti pysyy alhaisena jopa täydellä nimellispaineella. Tämä on erityisen edullista palloventtiiliä käytettäessä, koska se pienentää toimilaitteen kokoa ja siten venttiilin toimilaitteen kokonaiskustannuksia. Trunniota on saatavana kaikkiin kokoihin ja kaikkiin paineluokkiin, mutta ne on tarkoitettu pääasiassa suuriin kokoihin ja korkeisiin paineolosuhteisiin.

valettu nivelkiinnitteinen palloventtiili

NORTECH-taotusta teräksestä valmistetun kuulaventtiilin pääominaisuudet

1. Tuplaesto ja vuoto (DBB)

Kun venttiili on suljettu ja keskiontelo tyhjenee poistoventtiilin kautta, sekä ylä- että alavirran puoleiset istukat tukkeutuvat toisistaan ​​riippumatta. Poistolaitteen toinen tehtävä on tarkistaa venttiilin istukan vuoto testin aikana. Lisäksi rungon sisällä olevat kerrostumat voidaan pestä poistolaitteen läpi. Poistolaite on suunniteltu vähentämään väliaineen epäpuhtauksien aiheuttamia vaurioita istukalle.

tulenkestävä varsi
tulenkestävä istuin
yksittäinen tiivistys
yksittäinen tiivistys 02
tuplaesto ja vuoto (DBB)

2.Matala käyttömomentti

Putkilinjan kuulaventtiilissä on kuulalaakerirakenne ja kelluva venttiilin istukka, jotta saavutetaan pienempi vääntömomentti käyttöpaineessa. Se käyttää itsevoitelevaa PTFE:tä ja metallista liukulaakeria kitkakertoimen pienentämiseksi pienimmäksi yhdessä suuren lujuus- ja hienousprofiilin kanssa.

11. Puhaltamaton varsi

Karassa on puhallussuojattu rakenne. Karan pohjassa on askelma, joten yläpäätykannen ja ruuvin sijoittelun ansiosta väliaine ei puhalla karaa ulos, vaikka venttiiliontelon paine nousisi epänormaalisti.

Blow-out-suojattu varsi

puhaltaa ulos varren
tiivisteaineen ruiskutuslaite

4. Palonkestävä rakennesuunnittelu

Tulipalon sattuessa venttiilin käytön aikana PTFE:stä, kumista tai muista epämetallisista materiaaleista valmistetut istukkarengas, karan O-rengas ja keskilaipan O-rengas hajoavat tai vaurioituvat korkeassa lämpötilassa. Väliaineen paineen alaisena palloventtiili työntää istukkapidikettä nopeasti palloa kohti, jolloin metallinen tiivisterengas koskettaa palloa ja muodostaa metalli-metalli-tiivisterakenteen, joka voi tehokkaasti hallita venttiilin vuotoa. Trunnion-putkipalloventtiilin palonkestävä rakenne on API 607-, API 6FA-, BS 6755- ja muiden standardien mukainen.

5.Antistaattinen rakenne

Palloventtiili on suunniteltu antistaattiseksi ja siinä on staattisen sähkön purkauslaite, joka muodostaa staattisen kanavan suoraan pallon ja rungon välille varren läpi, jotta pallon ja istukan avautumisen ja sulkeutumisen aikana kitkan aiheuttama staattinen sähkö voidaan purkaa putkiston kautta. Tämä estää staattisen kipinän aiheuttaman tulipalon tai räjähdyksen ja varmistaa järjestelmän turvallisuuden.

6. Luotettava istuimen tiivistysrakenne

Istukkatiiviste toteutetaan kahdella kelluvalla istukkapidikkeellä. Ne voivat kellua aksiaalisesti estääkseen nesteen virtauksen, mukaan lukien kuulatiiviste ja rungon tiivistys. Venttiiliistukan matalapainetiivistys toteutetaan esikiristetyllä jousella. Lisäksi venttiiliistukan mäntävaikutus on suunniteltu oikein, mikä toteuttaa korkeapainetiivistyksen itse väliaineen paineella. Seuraavat kaksi kuulatiivistystyyppiä voidaan toteuttaa.

7. Yksittäinen tiivistys

(Automaattinen paineenalennus venttiilin keskiontelossa) Yleensä käytetään yksinkertaista tiivistysrakennetta. Eli venttiilissä on vain ylävirran puoleinen tiivistys. Koska käytetään erillisiä jousikuormitettuja ylä- ja alavirran puoleisia tiivistysistukoita, venttiiliontelon sisällä oleva ylipaine voi voittaa jousen esikiristysvaikutuksen, jolloin tiiviste irtoaa pallosta ja paineenalennus tapahtuu automaattisesti alavirran puoleista osaa kohti. Ylävirran puoli: Kun tiiviste liikkuu aksiaalisesti venttiiliä pitkin, ylävirran osaan (tuloaukkoon) kohdistuva paine "P" tuottaa vastakkaisen voiman A1:een. Koska A2 on suurempi kuin A1, A2-A1 = B1, B1:een kohdistuva voima työntää tiivistettä palloa vasten ja varmistaa ylävirran puoleisen osan tiiviin tiivistyksen.

Alavirran puoli: Kun venttiiliontelon sisällä oleva paine "Pb" kasvaa, A3:een kohdistuva voima on suurempi kuin A4:ään kohdistuva voima. Koska A3-A4 = B2, B2:n paine-ero voittaa jousivoiman, jolloin tiiviste irtoaa pallosta ja venttiiliontelon paine pääsee purkautumaan alavirran puolelle. Tämän jälkeen tiiviste ja kuula tiivistyvät uudelleen jousen vaikutuksesta.

8. Kaksinkertainen tiivistys (kaksoismäntä)

Trunnion-putkipalloventtiili voidaan suunnitella kaksoistiivisteellä ennen ja jälkeen pallon tiettyjä erityisiä käyttöolosuhteita ja käyttäjän vaatimuksia varten. Siinä on kaksoismäntävaikutus. Normaalioloissa venttiili käyttää yleensä ensisijaista tiivistystä. Kun ensisijainen tiiviste vaurioituu ja aiheuttaa vuodon, toissijainen tiiviste voi toimia tiivistyksenä ja parantaa tiivistyksen luotettavuutta. Tiivisteessä on yhdistetty rakenne. Ensisijainen tiiviste on metalli-metalli-tiiviste. Toissijainen tiiviste on fluorikumi-O-rengas, joka varmistaa, että palloventtiili saavuttaa kuplapinnan tiivistyksen. Kun paine-ero on hyvin pieni, tiivistävä tiiviste painaa palloa jousen avulla ensisijaisen tiivistyksen aikaansaamiseksi. Kun paine-ero kasvaa, tiivisteen ja rungon tiivistysvoima kasvaa vastaavasti, jolloin tiiviste ja pallo tiivistyvät tiiviisti ja varmistetaan hyvä tiivistyskyky.

Ensisijainen tiivistys: Ylävirta.

Kun paine-ero on pienempi tai paine-eroa ei ole, kelluva tiiviste liikkuu aksiaalisesti venttiiliä pitkin jousen vaikutuksesta ja työntää tiivistettä kohti palloa pitääkseen tiiviin tiivistyksen. Kun venttiilin istukan halkaisija on suurempi kuin alueelle A1, A2 - A1 = B1 kohdistuva voima, B1:n voima työntää tiivistettä kohti palloa ja varmistaa ylävirran osan tiiviin tiivistyksen.

9. Turvallisuuslaite

Koska palloventtiili on suunniteltu edistyneellä ensiö- ja toisiotiivisteellä, jossa on kaksinkertainen mäntävaikutus, eikä keskiontelo pysty toteuttamaan automaattista paineenalennusta, varoventtiili on asennettava runkoon, jotta vältetään venttiiliontelon sisällä olevan ylipaineen aiheuttamat vauriot, jotka voivat johtua väliaineen lämpölaajenemisesta. Varoventtiilin liitäntä on yleensä NPT 1/2. On myös huomioitava, että varoventtiilin väliaine johdetaan suoraan ilmakehään. Jos suoraa poistoa ilmakehään ei sallita, suosittelemme käyttämään palloventtiiliä, jossa on erityinen automaattinen paineenalennus ylävirtaan. Katso lisätietoja seuraavasta. Ilmoita tilauksessa, jos et tarvitse varoventtiiliä tai jos haluat käyttää palloventtiiliä, jossa on erityinen automaattinen paineenalennus ylävirtaan.

turvalaite

Palloventtiilin ylä- ja alavirran tiivistyksen periaatekuva

istuimen rakenne 01

Periaatekuva palloventtiilin ontelon paineenalennusjärjestelmästä ylävirtaan ja alavirran tiivistysjärjestelmästä

istuinrakenne02

12. Korroosionkestävyys ja sulfidijännityksen kestävyys

Korin seinämän paksuudelle jätetään tietty korroosiovara.

Hiiliteräksestä valmistettu varsi, kiinteä akseli, kuula, istuin ja istuinrengas on kemiallisesti nikkelöity ASTM B733- ja B656-standardien mukaisesti. Lisäksi käyttäjille on saatavilla erilaisia ​​korroosionkestäviä materiaaleja. Asiakkaan vaatimusten mukaan venttiilimateriaalit voidaan valita NACE MR 0175 / ISO 15156- tai NACE MR 0103 -standardien mukaisesti, ja valmistuksen aikana on suoritettava tiukka laadunvalvonta ja laaduntarkastus, jotta standardien vaatimukset ja rikkipitoisen ympäristön käyttöolosuhteet täyttyvät täysin.

NORTECH-taotusta teräksestä valmistetun kuulaventtiilin tekniset tiedot

Trunnion-palloventtiilin tekniset tiedot

Nimellishalkaisija

2”–56” (DN50–DN1400)

Yhteystyyppi

RF/BW/RTJ

Suunnittelustandardi

API 6D/ASME B16.34/API608/MSS SP-72 -palloventtiili

Rungon materiaali

Valettu teräs / Taottu teräs / Valettu ruostumaton teräs / Taottu ruostumaton teräs

Pallon materiaali

A105+ENP/F304/F316/F304L/F316L

Istuimen materiaali

PTFE/PPL/NAILON/PEEK

Käyttölämpötila

Jopa 120 °C PTFE:lle

 

Jopa 250 °C PPL/PEEK-muoville

 

Jopa 80 °C nailonille

Laippapää

ASME B16.5 RF/RTJ

BW-pää

ASME B 16.25

Kasvotusten

ASME B 16.10

Paine-lämpötila

ASME B 16.34

Paloturvallinen ja antistaattinen

API 607/API 6FA

Tarkastusstandardi

API598/EN12266/ISO5208

Lämpötila-anturi

ATEX

Toiminnan tyyppi

Manuaalivaihteisto/Pneumaattinen toimilaite/Sähköinen toimilaite

Tuotenäyttö: Taottu teräsrunkoinen palloventtiili

trunnion-palloventtiili-03
trunnion-palloventtiili-04
trunnion-palloventtiili-05

NORTECH-taotun teräksisen palloventtiilin käyttö

TällainenTaottu teräspalloventtiilikäytetään laajalti öljyn, kaasun ja mineraalien hyödyntämis-, jalostus- ja kuljetusjärjestelmissä. Sitä voidaan käyttää myös kemiallisten tuotteiden ja lääkkeiden tuotantoon; vesivoiman, lämpövoiman ja ydinvoiman tuotantojärjestelmiin; viemäröintijärjestelmiin,

 


  • Edellinen:
  • Seuraavaksi:

  • Aiheeseen liittyvät tuotteet